Sparse Least Squares Support Vector Machine Classiiers
نویسندگان
چکیده
In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equality constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. However, a drawback is that sparseness is lost in the LS-SVM case due to the choice of 2-norms. In this paper we propose a method for imposing sparseness to the LS-SVM solution. This is done by pruning the support value spectrum which is revealing the relative importance of the training data points and is immediately available as solution to the linear systems.
منابع مشابه
Least Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملLeast-squares support vector machine and its application in the simultaneous quantitative spectrophotometric determination of pharmaceutical ternary mixture
This paper proposes the least-squares support vector machine (LS-SVM) as an intelligent method applied on absorption spectra for the simultaneous determination of paracetamol (PCT), caffeine (CAF) and ibuprofen (IB) in Novafen. The signal to noise ratio (S/N) increased. Also, In the LS - SVM model, Kernel parameter (σ2) and capacity factor (C) were optimized. Excellent prediction was shown usin...
متن کاملDetermination of 137Ba Isotope Abundances in Water Samples by Inductively Coupled Plasma-optical Emission Spectrometry Combined with Least-squares Support Vector Machine Regression
A simple and rapid method for the determination of 137Ba isotope abundances in water samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) coupled with least-squares support vector machine regression (LS-SVM) is reported. By evaluation of emission lines of barium, it was found that the emission line at 493.408 nm provides the best results for the determination...
متن کاملOPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE
A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...
متن کاملAn Iterative Learning Algorithm Based on Least Squares Support Vector Regression Machines
Aiming at the problem of the large training data set leading to amounts of calculation a sparse approximation algorithm of least squares support vector machine are proposed. Firstly using the thought of matrix block, convert the optimization problem of a Least Squares support vector machine into low order symmetric positive definite linear systems. Furthermore, use conjugate gradient algorithm ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000